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Abstract

Drawing samples from high dimensional probability distributions is a ubiquitous problem

in statistics and machine learning. This thesis is dedicated to studying two specific high

dimensional sampling problems: 1) sampling from probability distributions supported on

a lattice, and 2) sampling uniformly from the set of all d× d doubly stochastic matrices.

The first part of this thesis deals with the problem of drawing samples from probabil-

ity distributions supported on a d-dimensional lattice Λ = BZd, where B is a full-rank

matrix. Specifically, we consider lattice distributions PΛ in which the probability at a

lattice point is proportional to a given probability density function, f , evaluated at that

point. To generate samples from PΛ, it suffices to draw samples from a pull-back mea-

sure PZd defined on the integer lattice. The probability of an integer lattice point under

PZd is proportional to the density function π = | det(B)|f ◦B. We rely on Markov Chain

Monte Carlo (MCMC) methods for drawing samples from PZd . Specifically, Metropolis-

Hastings and Hamiltonian Monte Carlo are the MCMC algorithms that we use. We

classify the algorithms discussed in this part into two: algorithms in which the state-

space of the underlying Markov Chain is discrete and algorithms in which the state-space

is continuous.

One of the discrete state-space algorithms that we present is an Independent Metropolis-

Hastings algorithm. In particular, we use a sample drawn from the density π after round-

ing to its nearest integer point as the candidate state. We show that this algorithm is

uniformly ergodic when − log(π) is gradient Lipschitz. Then we present two more algo-

rithms with discrete state-space that are based on Symmetric Metropolis-Hastings.

One of the continuous state-space algorithms we introduce in this thesis for sampling

from PZd is based on the Metropolis-Hastings framework. In particular, we use π as

the proposal distribution and calculate the Metropolis-Hastings acceptance ratio for a

well-chosen target distribution. We can use any method, denoted by ALG, that ideally

draws samples from the probability density π, to generate a proposed state. The target
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distribution is a piecewise sigmoidal distribution, chosen such that the coordinate-wise

rounding of a sample drawn from the target distribution gives a sample from PZd . When

ALG is ideal, we show that our algorithm is uniformly ergodic if − log(π) satisfies a

gradient Lipschitz condition. We propose one more continuous state-space algorithm

that is based on Hamiltonian Monte Carlo.

In the second part of this thesis, we look into sampling uniformly from the set of all

d × d doubly stochastic matrices, also known as the Birkhoff polytope. We study the

well-known Sinkhorn algorithm that converges to a doubly stochastic matrix starting

from a positive initial matrix. We develop an alternative to the Sinkhorn algorithm and

analyze its convergence. We would like to state that the aim of the second part of the

thesis is far from being accomplished.
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Chapter 1

Introduction

In this part of the thesis, we look into the problem of sampling from probability dis-

tributions supported on a lattice (referred to as a lattice distribution). Specifically, we

consider lattice distributions in which the probability at a lattice point is proportional

to a given probability density function evaluated at that point. Such distributions have

found applications in cryptography, lattice coding, and secure communication [1], [2],

[3]. An example of a lattice distribution that has received much interest from researchers

is the lattice Gaussian. A lattice Gaussian distribution is a probability distribution de-

fined on a lattice Λ, such that for each x ∈ Λ, the probability of x is proportional to

a Gaussian density function evaluated at x. Lattice Gaussian sampling, also known as

discrete Gaussian sampling (DGS), is closely related to shortest vector problem (SVP)

and closest vector problem (CVP), which are computationally hard lattice problems [4].

Lattice Gaussian sampling is also employed for decoding and signal detection in Multiple

Input Multiple Output (MIMO) systems [5]. There are some known methods to generate

samples from lattice Gaussian distributions [1], [6], [7], but few methods are available for

drawing samples from arbitrary lattice distributions [8]. We try to address this problem.

The motivation to go beyond lattice Gaussian is in part due to [3], where samples from

a particular fat-tailed lattice distribution are used to achieve information-theoretically

perfect security.

Sampling methods for generic lattice distributions are not known before this work.

All existing algorithms for lattice distribution sampling are tailored for lattice Gaussians

to the best of our knowledge. Examples are non-iterative algorithms like Klein’s algo-

rithm [9] and Peikert’s algorithm [10]. Klein’s algorithm samples from a d-dimensional

lattice Gaussian distribution by sequentially sampling from d 1-dimensional lattice Gaus-
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Introduction

sians. Klein’s algorithm is known to sample from a distribution close to the desired lattice

Gaussian when the variance of the lattice Gaussian is not too small. Peikert’s algorithm

draws samples directly from d-dimensional lattice Gaussians and hence is faster than

Klein’s algorithm for several lattices. But a sample drawn by Klein’s algorithm is from

a distribution closer to the desired lattice distribution than Peikert’s algorithm. It is

worth noting that Klein’s algorithm and Peikert’s algorithm are randomized versions

of Babai’s nearest plane and round-off algorithms, respectively [11]. Lately, Markov

Chain Monte Carlo (MCMC) methods have been adopted for lattice Gaussian sampling.

Some of the known MCMC algorithms for lattice Gaussian sampling are Independent

Metropolis-Hastings-Klein (MHK) algorithm, Symmetric Metropolis-Klein (SMK) al-

gorithm [6], Gibbs algorithm, Metropolis within Gibbs algorithm, Learnable delayed

Metropolis within Gibbs algorithm [7] etc.

The algorithms that we present in this part take advantage of the fact that there

is a related continuous density function for the lattice distributions that we consider.

Sampling from continuous probability distributions is more flexible due to the availability

of gradient of the density function. The algorithms that we present belong to the MCMC

paradigm. In particular, we rely on the Metropolis-Hastings framework to construct our

algorithms. The rest of this chapter reviews the background on lattice distributions and

the preliminaries of MCMC algorithms.

1.1 Notations

We denote the state space of a Markov chain by X . The operator ∧ operates on two

numbers to output the minimum of them. Nearest integer point to a vector x ∈ Rd

obtained by coordinate-wise rounding is denoted by [x]. We use U [0, 1] to denote the

uniform probability distribution on the interval [0, 1]. We denote the Borel-sigma algebra

on Rd by B(Rd). For two probability measures µ and ν defined on the same probability

space, we use the notation µ� ν to indicate that µ is absolutely continuous with respect

to ν.

1.2 Lattice Distributions

We now formally define a lattice and probability distributions defined on a lattice. Let

B ∈ Rd×d be a full-rank matrix. The d-dimensional lattice Λ generated by B is defined
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Introduction

as

Λ := {Bz : z ∈ Zd}.

Any probability distribution defined with Λ as the support is known as a lattice distri-

bution. In this thesis, we look at a specific class of lattice distributions in which the

probability distribution is induced by a density function on Rd. That is, the probability

of a lattice point is equal to the density function evaluated at that point with appropriate

normalization. This thesis mainly considers density functions having the following form

f(x) =
e−ψ(x)

Zψ
for all x ∈ Rd,

where ψ(x) is known as a potential function, and Zψ =
∫
Rd e

−ψ(x)dx is a normaliza-

tion constant. Equivalently, the density function is strictly positive everywhere on Rd.
However, in practice, the algorithm that we develop works for any lattice distribution

induced by a density function. Let PΛ(x) for x ∈ Λ be a lattice distribution induced by

the above f(x), i.e.,

PΛ(x) =
e−ψ(x)

Z
for all x ∈ Λ,

where

Z =
∑
x∈Λ

e−ψ(x).

Let B denote a generator matrix of the lattice Λ. Then, for generating a sample from the

probability distribution PΛ, it suffices to sample from PZd(z) = PΛ(Bz), where z ∈ Zd,
and then obtain x as x = Bz. So, our problem reduces to one of sampling from the

following probability distribution over Zd:

PZd(z) =
e−ψ(Bz)

Z
for all z ∈ Zd.

Let ϕ(x) := ψ(Bx) for all x ∈ Rd, so that

PZd(z) =
e−ϕ(z)

Z
for all z ∈ Zd. (1.1)

Also, let us define the probability density π as:

π(x) :=
e−ϕ(x)

K
for all x ∈ Rd, (1.2)

where

K =

∫
Rd
e−ϕ(x)dx.
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Introduction

We have now reduced the problem of sampling from a probability distribution defined

on an arbitrary lattice Λ to sampling from a probability distribution defined on Zd. In

later chapters of this thesis, we try to develop algorithms for drawing samples from the

lattice distribution PZd induced by the probability density π.

Lattice Gaussian Distribution

A lattice distribution that has received significant attention is the lattice Gaussian dis-

tribution. A lattice Gaussian distribution defined on a lattice Λ is given by

DΛ,σ,c(x) =
e−
‖x−c‖2

2σ2∑
y∈Λ e

− ‖y−c‖2
2σ2

for all x ∈ Λ, (1.3)

where c ∈ Rd is the mean vector and σ is the variance parameter. Lattice Gaussian

distributions have important practical applications, particularly in cryptography [1].

1.3 Markov Chain Monte Carlo (MCMC)

As stated earlier, we take the MCMC route to generate samples from the desired lattice

distribution. MCMC is a class of sampling algorithms in which an ergodic discrete-time

Markov chain (Xt) is set up whose stationary distribution is the same as the desired

probability distribution (also called the target distribution). The idea is to simulate this

Markov chain for a large enough number of steps to draw samples approximately from

the desired probability distribution. In this section, we review two specific instances of

MCMC algorithms: Metropolis-Hastings and Hamiltonian Monte Carlo.

1.3.1 The Metropolis-Hastings Algorithm

Given a Markov chain, it is straightforward to find its stationary distribution. However,

it is not apparent how to find a Markov chain with the desired stationary distribution.

The Metropolis-Hastings algorithm provides a recipe for establishing a Markov chain

with the desired stationary distribution. Let π̄ denote the probability distribution from

which we want to draw samples. Then, the Metropolis-Hastings algorithm consists of

two steps in generating the next state of the Markov chain:

• Let x be the current state. Generate a proposed state (also called the candidate

state) y from some probability distribution q(x, ·) (referred to as the proposal

distribution).
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• Accept the proposed state as the next state of Markov chain with probability

α(x,y) given by

α(x,y) = 1 ∧ π̄(y)q(y,x)

π̄(x)q(x,y)
.

There are two special cases of Metropolis-Hastings algorithm.

Independent Metropolis-Hastings

If the proposed state is independent of the current state, we call this the Independent

Metropolis-Hastings. The acceptance ratio is then given by

α(x,y) = 1 ∧ π̄(y)q(x)

π̄(x)q(y)
.

From now on, we refer to the Markov chain associated with an Independent Metropolis-

Hastings algorithm by IMH Markov chain.

Symmetric Metropolis-Hastings

In Symmetric Metropolis-Hastings, the proposal distribution q satisfies the following

property:

q(x,y) = q(y,x) for all x,y ∈ X .

The acceptance ratio in this case reduces to

α(x,y) = 1 ∧ π̄(y)

π̄(x)
.

1.3.2 Hamiltonian Monte Carlo (HMC)

In this section, we describe an elegant, physics-inspired algorithm to generate samples

from continuous densities [12]. Hamiltonian Monte Carlo employs Hamiltonian dynamics

to produce the next state of a Markov chain.

Hamiltonian Dynamics

Hamiltonian dynamics is the time evolution of d-dimensional vectors x and p according

to the partial differential equations

dxi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂xi

,
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Introduction

for i = 1, · · · , d. In this context, x and p are called the position and the momentum

variables respectively. The entity H, referred to as Hamiltonian, is given by

H(x,p) = ϕ(x) +K(p),

where ϕ is called the potential energy and K is called the kinetic energy. The R2d

space with elements (x,p) is called the phase space. Hamiltonian dynamics has three

important properties, viz.

• Reversibility: Let Ts denote the mapping from (x(t),p(t)) to (x(t+ s),p(t+ s)),

that is, the transformation corresponding to running Hamiltonian dynamics for

time s. Then negating p, applying Ts, and then negating p again recovers the

initial state from the final state. Therefore Ts is an invertible mapping.

• Conservation of Hamiltonian: Hamiltonian H(x,p) is invariant under Hamil-

tonian dynamics. This is equivalent to conservation of energy statement.

• Volume preservation: Hamiltonian dynamics preserves volume in (x,p) space.

That is, if we apply the mapping Ts to the points in some region R of (x,p) space

with volume V , the image of R under Ts will also have volume V . Equivalently,

we can say that Jacobian of Ts is unity.

Using these properties, it can be shown that Hamiltonian dynamics leaves the probability

distribution

Q(x,p) =
1

ZH
e−ϕ(x)e−K(p)

defined on R2d, invariant (ZH is the normalization constant). Note that under the

distribution Q, the variables x and p are statistically independent. The kinetic energy

K, is often chosen such that p has a Gaussian distribution with independent components,

i.e., K(p) = pTp
2σ2 .

Finding the trajectory of Hamiltonian dynamics in closed form is not always possible,

and therefore we have to rely on numerical methods. The leapfrog integrator is the widely

used method to simulate the Hamiltonian dynamics and is as described in Algorithm 1.

Hamiltonian Monte Carlo (HMC)

The leapfrog integrator retains the Hamiltonian dynamics’ reversibility and volume

preservation properties, but it fails to preserve the Hamiltonian H. Thus, a Metropolis-
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Algorithm 1: Hamiltonian Dynamics using leapfrog integrator

Input: x0,p0, ε, L, σ,∇ϕ
Output: xL,pL

for i = 1 . . . L do

p← pi−1 − ε
2∇ϕ(xi−1);

xi ← xi−1 + ε p
σ2 ;

pi ← p− ε
2∇ϕ(xi);

end

Hastings correction step is required for the dynamics to have Q as the invariant distri-

bution. Also, the Hamiltonian dynamics described so far is deterministic. Randomness

is brought into the dynamics by resampling the momentum variables from their proba-

bility distribution, after each iteration. This is required to ensure the ergodicity of the

Markov chain established. The Hamiltonian dynamics after these modifications is called

the HMC algorithm. HMC can also be viewed as a Metropolis-Hastings algorithm which

uses Hamiltonian dynamics to generate candidate states. The steps involved in HMC

are summarized in Algorithm 2.

1.4 Distance between probability distributions

For assessing the goodness of any sampling algorithm, it is essential to have a metric

defined on the space of probability distributions. The metric we use in our analysis is the

Total Variation Distance (TVD). For two distributions µ and ν defined on (Rd,B(Rd)),
we use ‖µ− ν‖TV to denote their TVD given by

‖µ− ν‖TV = sup
A∈B(Rd)

|µ(A)− ν(A)|.

If λ is a probability measure such that µ � λ and ν � λ, then an alternate expression

for TVD is given by

‖µ− ν‖TV =
1

2

∫
Rd

∣∣∣∣dµdλ (x)− dν

dλ
(x)

∣∣∣∣λ(dx), (1.4)

where dµ
dλ and dν

dλ are the Radon-Nikodym derivatives of µ and ν with respect to λ (see

Lemma 2.1 in [13]).
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Algorithm 2: Hamiltonian Monte Carlo Algorithm

Input: ϕ,∇ϕ,X0, ε, L

Output: Sample from a distribution statistically close to π(·) = e−ϕ(·)

K

for t = 1, 2, . . . do

Let x be the state of Xt−1;

Sample p0 from N (0, σI);

(y,p)←Algorithm 1(x,p0, ε, L, σ,∇ϕ);

Calculate acceptance ratio α = 1 ∧ exp(ϕ(x)− ϕ(y) + ‖p0‖2−‖p‖2
2σ2 );

Generate a sample u from U [0, 1];

if u ≤ α then

let Xt = y;

else

Xt = x;

end

if t > tmix(ε) then
Output the state of Xt

end

end

1.5 Convergence to stationarity

In this section, we give some definitions useful in evaluating the convergence of a Markov

chain to its stationary distribution. We refer the reader to [14], [15] for a comprehensive

review of these topics.

Definition 1. A Markov chain with transition kernel P and stationary distribution π̄

is uniformly ergodic if there exists 0 < δ < 1 and M <∞ such that for all x ∈ X ,

‖P t(x, ·)− π̄(·)‖TV ≤M(1− δ)t.

Theorem 1. (Theorem 8 in [15]). Let P be the transition kernel of a Markov chain and

π̄ be its stationary distribution. Suppose there exists a δ > 0 and a probability measure

ν such that, for all measurable B ⊆ X ,

P (x, B) ≥ δν(B) for all x ∈ X .

Then the Markov chain with transition kernel P is uniformly ergodic and satisfies the
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following inequality:

‖P t(x, ·)− π̄(·)‖TV ≤ (1− δ)t for all x ∈ X .

Definition 2. A Markov chain with transition kernel P and stationary distribution π̄

is geometrically ergodic if there exists 0 < δ < 1 such that, for all x ∈ X ,

‖P t(x, ·)− π̄(·)‖TV ≤M(x)(1− δ)t,

with M(x) <∞.

Definition 3. For a small ε > 0, and initial state x, a mixing time tmix(ε; x) is defined

as

tmix(ε; x) = inf{t : ‖P t(x, ·)− π̄(·)‖TV < ε}.

10



Chapter 2

MCMC on Discrete State-Space

In this chapter, we propose discrete state-space MCMC algorithms for sampling from

lattice distributions. As elaborated in the previous chapter, to draw samples from a

lattice distribution, it suffices to sample from a distribution PZd on the integer lattice

Zd. We consider PZd having the following form:

PZd(z) =
e−ϕ(z)

Z
for all z ∈ Zd. (2.1)

The probability density π is defined as:

π(x) :=
e−ϕ(x)

K
for all x ∈ Rd, (2.2)

where

K =

∫
Rd
e−ϕ(x)dx.

We propose two algorithms for sampling from PZd : an Independent Metropolis-Hastings

based algorithm which we call the Independent Metropolis-Hastings with Rounding on

Zd (IMHRZ), and a Symmetric Metropolis-Hastings algorithm which we call the Random

Walk Metropolis with Rounding (RWMR). We prove that IMHRZ is uniformly ergodic

under ideal conditions when ϕ satisfies a particular regularity condition. We also show

that RWMR is geometrically ergodic when π is a sub-exponential probability density.

2.1 Independent Metropolis-Hastings with Rounding on

Zd (IMHRZ)

As mentioned, IMHRZ is based on the Independent Metropolis-Hastings algorithm with

PZd as the target distribution. In IMHRZ, we generate a candidate state by drawing
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MCMC on Discrete State-Space

a sample from the probability density π on Rd, and then rounding the sample to its

nearest integer point. Any off-the-shelf method like Hamiltonian Monte Carlo (HMC),

Metropolis Adjusted Langevin Algorithm (MALA), etc., can be used to draw samples

from the probability distribution π. Let us denote the method used to sample from π

by ALG. If we assume ALG produce samples exactly from the probability distribution

π, then the value of the proposal distribution q at an integer point x is the integral of π

over the unit hypercube centered at x. That is,

q(x) =

∫
u∈S

π(x + u)du, (2.3)

where S = [−1
2 ,

1
2 ]d. Since the target distribution PZd is proportional to π at every

integer lattice point, the acceptance ratio α is calculated as follows:

α(x,y) = 1 ∧ π(y)q(x)

π(x)q(y)
. (2.4)

The steps involved in IMHRZ are described in Algorithm 3.

Algorithm 3: Independent Metropolis-Hastings with Rounding on Zd

Input: B,X0, tmix(ε)

Output: Sample from a distribution statistically close to PΛ

for t = 1, 2, . . . do

Let x denote the state of Xt−1;

Generate w from the probability distribution π using ALG;

Round w to its nearest point in Zd to get y;

Calculate acceptance ratio α(x,y) given by equation 2.4;

Generate a sample u from U [0, 1];

if u ≤ α(x,y) then

let Xt = y;

else

Xt = x;

end

if t > tmix(ε) then
Output BXt

end

end
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MCMC on Discrete State-Space

2.1.1 Convergence analysis

Now we analyze the convergence speed of IMHRZ algorithm. This analysis assumes

that ALG is ideal, in the sense that it produce samples exactly from the probability

distribution π. Analysis when ALG is non-ideal is deferred to Appendix A. The following

Proposition is true in general for Independent Metropolis-Hastings algorithm.

Proposition 1. Let X be a countable set. A Markov chain established by Independent

Metropolis-Hastings algorithm on the state-space X is uniformly ergodic if

q(z)

ν(z)
≥ δ > 0, ∀ z ∈ X , (2.5)

where q is the proposal distribution and ν is the target distribution.

Proof. The transition probability P of an IMH Markov chain with proposal distribution

q and target distribution ν is given by

P (x,y) =

q(y) ∧ ν(y)q(x)
ν(x) , if y 6= x

1−
∑

z 6=x q(z) ∧ ν(z)q(x)
ν(x) , if y = x.

Then,

P (x,y)

ν(y)
=


q(y)
ν(y) ∧

q(x)
ν(x) , if y 6= x

q(y)
ν(y) + 1

ν(y)

∑
z 6=x max

{
0, q(z)− ν(z)q(x)

ν(x)

}
, if y = x.

=⇒ P (x,y) ≥ δν(y) for all x,y ∈ X .

Therefore by Theorem 1, P is an uniformly ergodic Markov chain.

Now we will present some target distributions for which (2.5) is satisfied in the case

of IMHRZ algorithm. We define a widely used smoothness property of functions called

L-smoothness.

Definition 4. A function f : Rd → R is called L-smooth if the gradient of f is Lipschitz

continuous with parameter L. That is, f should satisfy the following property

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x,y ∈ Rd.

The following is a well known fact about L-smooth functions (see Lemma 5 in [16]).

If f is L-smooth, then for all x,y ∈ Rd,

f(y) ≤ f(x) + (y − x)T∇f(x) +
L

2
‖x− y‖2. (2.6)

13
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Proposition 2. Let S = [−1
2 ,

1
2 ]d. If ϕ is an L-smooth function, then for all z ∈ Zd

q(z)

PZd(z)
=
Z

K

∫
S e
−ϕ(z+x)dx

e−ϕ(z)
≥ Z

K

∫
S
e−

L
2
‖x‖2dx > 0, (2.7)

where q is the proposal distribution of IMHRZ and PZd is the target distribution.

Proof.

q(z)

PZd(z)
=
Z

K

∫
S
eϕ(z)−ϕ(z+x)dx

(a)

≥ Z

K

∫
S
e−x

T∇ϕ(z)−L
2
‖x‖2dx

(b)
=

Z

K

1

2

∫
S
e−

L
2
‖x‖2(ex

T∇ϕ(z) + e−x
T∇ϕ(z))dx

(c)

≥ Z

K

∫
S
e−

L
2
‖x‖2dx > 0,

where (a) is due to (2.6), (b) is due to the symmetry of S, and (c) is due to AM-GM

inequality.

Therefore, by Proposition 1 and 2 a sufficient condition for IMHRZ to be uniformly

ergodic is that ϕ is an L-smooth function and the transition probability P satisfies the

following inequality:

‖P k(z, ·)− PZd(·)‖TV ≤
(

1− Z

K

∫
S
e−

L
2
‖u‖2du

)k
for all z ∈ Zd.

Corollary 1. IMHRZ algorithm is uniformly ergodic when the target distribution is a

lattice Gaussian.

In Appendix A we analyse the case when ALG is not ideal. We show that an

upper bound for total variation distance between the distribution at the kth iteration of

IMHRZ and target distribution can still be derived. A major drawback of IMHRZ is the

practical issue in computing the acceptance ratio α. Computing the value of proposal

distribution q requires the evaluation of a high-dimensional integral. The computations

required to accurately calculate the value of q at an integer point grow exponentially

with dimension. This makes IMHRZ unusable for high dimensions.

14
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2.2 Random Walk Metropolis with Rounding (RWMR)

The computational difficulty in calculating the acceptance ratio in IMHRZ motivates us

to look at Symmetric Metropolis-Hastings algorithms. The acceptance ratio of Symmet-

ric Metropolis-Hastings does not have a proposal distribution term, hence easily com-

putable. The only known symmetric proposal algorithm for lattice distribution sampling

is the Symmetric Metropolis Klein (SMK) algorithm [6] which is used to sample from

lattice Gaussian distribution. This thesis proposes a more straightforward algorithm:

Random Walk Metropolis with Rounding (RWMR), which has convergence properties

similar to SMK but involves lesser computation. As in the case of SMK, RWMR can be

proved to be geometrically ergodic when π is sub-exponential.

In RWMR, a candidate state is obtained by adding to the current state an indepen-

dent continuous Gaussian random variable after rounding to its nearest integer point.

That is, if x is the current state, the candidate state y is obtained as

y = x + [w],

where w ∼ N (0,Σ). Then the proposal distribution q is given by

q(x,y) =
1

(2π)
d
2 det(Σ)

1
2

∫
S
e−

1
2

(y−x+u)TΣ−1(y−x+u)du = q(y,x),

where S = [−1
2 ,

1
2 ]d. The symmetry of the proposal distribution q follows from the

symmetry of the Gaussian distribution and the set S. Such a scheme where proposal

distribution q(x,y) is a function of x−y is known as a random walk Metropolis algorithm.

The procedure to generate one sample from the target distribution is summarized in

Algorithm 4. We make it clear that RWMR is a trivial algorithm. We include it in this

thesis to inform that there are simple and better symmetric proposal algorithms than

SMK. It can be shown that the Markov chain established by Algorithm 4 is geometrically

ergodic when π is sub-exponential. However, we do not include the result here, as the

proof is almost identical to the proof of Theorem 2 in [6]. Appendix B contains a

discussion on the geometric ergodicity of RWMR.

Optimal tuning of parameters

Scaling the variance of proposal distribution is vital in achieving the best possible con-

vergence rate as dimension increases. If the variance is too large, the proposals generated

will be far from the current state. Therefore, the probability of the proposed state get-

ting accepted will be less. If the variance is too small, the exploration of the state space

15
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Algorithm 4: Random Walk Metropolis with Rounding Algorithm

Input: B,X0, tmix(ε),Σ

Output: Sample from a distribution statistically close to PΛ

for t = 1, 2, . . . do

Let x denote the state of Xt−1;

Generate w from N (0,Σ);

Round w to its nearest point in Zn to get z;

y← x + z;

Calculate acceptance ratio α(x,y) = 1 ∧ π(y)
π(x) ;

Generate a sample u from U [0, 1];

if u ≤ α(x,y) then

let Xt = y;

else

Xt = x;

end

if t > tmix(ε) then
Output BXt

end

end

will be very slow. This is a well-studied problem in random walk Metropolis on continu-

ous state-space [17] [18]. We adopt the same techniques used in random walk Metropolis

on continuous state-space for scaling the variance of the proposal distribution. It is

well known that the optimum acceptance rate tends to 0.234 as dimension increases for

random walk Metropolis. Variance should be scaled as d−1 with dimension to maintain

this acceptance rate. It is also known that the use of covariance matrix proportional to

that of target density for proposal distribution improves the convergence properties of

the random walk Metropolis [19]. Overall, the covariance matrix of proposal distribu-

tion can be chosen proportional to d−1Σ, where Σ is the covariance matrix of the target

distribution.

Other symmetric Metropolis-Hastings algorithms

In Appendix C, we introduce another symmetric proposal algorithm in which Hamil-

tonian dynamics is used to generate a candidate state. However, the degradation of

16
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convergence performance of this algorithm when π is a non-isotropic probability distri-

bution makes it of less use in practice.

17



Chapter 3

MCMC on Continuous

State-Space

As we have seen in the previous chapter, the IMHRZ algorithm is not computationally

feasible at high dimensions. On the other hand, the RWMR algorithm is computationally

efficient. However, analytically deriving its convergence rate is hard. This led us to

explore the possibility of MCMC algorithms with continuous state-space. That is, the

target distribution, which we denote by π̄, will now be a probability density on Rd. For

this to work, a random variable with the desired probability distribution PZd should be

easily derivable from a random variable with distribution π̄. In this chapter, we show

that such choices of π̄ exist. We again consider PZd having the following form:

PZd(z) =
e−ϕ(z)

Z
for all z ∈ Zd. (3.1)

The probability density π is defined as:

π(x) :=
e−ϕ(x)

K
for all x ∈ Rd, (3.2)

where

K =

∫
Rd
e−ϕ(x)dx.

3.1 Independent Metropolis-Hastings with Rounding (IMHR)

In this section, we introduce an Independent Metropolis-Hastings algorithm for sampling

from lattice distribution PZd defined in (3.1). In this algorithm, we suppose that it is

18
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possible to generate samples from the probability density π defined in (3.2). Any state-of-

the-art MCMC algorithm such as Hamiltonian Monte Carlo (HMC) [12], or Metropolis

adjusted Langevin algorithm (MALA) [20], can be used for this purpose. The idea is

to use π as the proposal distribution in the Independent Metropolis-Hastings algorithm.

For such a method to be effective in sampling from PZd , we need a target distribution π̄

with the following properties:

• Using a random variable with probability distribution π̄, we should be able to

efficiently derive a random variable with distribution PZd .

• The probability distribution π̄ should be statistically close to π. This will reduce

the possibility of rejecting a proposal in the Independent Metropolis-Hastings al-

gorithm, thereby improving its convergence speed to the stationary distribution.

A naive approach would be to choose π̄ as a piece-wise constant density. That is,

π̄(x) is equal to π([x]) with appropriate normalization for all x ∈ Rd. It is easy to see

that the rounding operation on a sample generated from π̄ gives a sample from PZd .

The drawback of such an approach is that the Markov chain thus generated need not

be uniformly ergodic, even for lattice Gaussians (see Appendix D). This motivates us to

find a π̄ that is a better approximation to π.

Figure 3.1: Different approximations for Gaussian density

We define a new probability distribution π̄ which will be called the target distribution

henceforth, as follows:

π̄(x) =
1

Z

2e−ϕ(x̄)

1 + e2(x−x̄)T∇ϕ(x̄)
for all x ∈ Rd, (3.3)
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where Z and ϕ are the same entities which appear in (3.1), and x̄ is the nearest integer

point to x which is obtained by coordinate-wise rounding. We should visualize π̄ as

a probability density function obtained by approximating π using a sigmoid function

within each unit hypercube in Rd and then normalizing. The sigmoid function is chosen

such that, at the center of any unit hypercube, its value and gradient are proportional

to the value and gradient of π. This is illustrated in Figure 3.1 where π is a Gaussian

density function. Note that the functions plotted in Figure 3.1 are unnormalized. We

can obtain a sample from PZd by rounding the sample generated from π̄ to its nearest

integer point. To see this, let X be a random variable with probability density π̄. Let

Z = [X] and let S denote the unit hypercube centered at the origin, i.e., S = [−1
2 ,

1
2 ]d.

Then,

P(Z = z) = P(X ∈ z + S)

=

∫
S
π̄(z + u)du

(a)
=

1

2

∫
S

(π̄(z + u) + π̄(z− u)) du

=
1

Z
e−ϕ(z)

∫
S

(
1

1 + e2uT∇ϕ(z)
+

1

1 + e−2uT∇ϕ(z)

)
du

=
1

Z
e−ϕ(z)

∫
S

(
1

1 + e2uT∇ϕ(z)
+

e2uT∇ϕ(z)

1 + e2uT∇ϕ(z)

)
du

=
1

Z
e−ϕ(z),

where (a) is due to the symmetry of S. Therefore, to generate samples from PZd , it

suffices to draw samples from π̄ and then do coordinate-wise rounding.

Summarizing, IMHR is an Independent Metropolis-Hastings algorithm with π defined

in (3.2) as the proposal distribution and π̄ defined in (3.3) as the target distribution.

The steps of IMHR are as described in Algorithm 5.

3.1.1 Convergence analysis

In this section, we analyze the convergence speed of Algorithm 5 to its stationary dis-

tribution. Algorithm 5 requires a sub-routine, denoted by ALG henceforth, which is

ideally capable of drawing samples from π. The following analysis assumes that we have

such a sub-routine available. Error due to non-availability of such an ideal sub-routine

will be analyzed in the next section.
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Algorithm 5: IMHR Algorithm

Input: X0, π, ϕ,∇ϕ
Output: Sample from a distribution statistically close to PZd

for t = 1, 2, . . . do

Let x be the state of Xt−1;

Generate y from the probability distribution π;

Round x to its nearest point in Zd to get x̄;

Round y to its nearest point in Zd to get ȳ;

π̄(x) = 2 exp(−ϕ(x̄))
1+exp(2(x−x̄)T∇ϕ(x̄))

;

π̄(y) = 2 exp(−ϕ(ȳ))
1+exp(2(y−ȳ)T∇ϕ(ȳ))

;

Calculate acceptance ratio α(x,y) = 1 ∧ π̄(y)π(x)
π̄(x)π(y) ;

Generate a sample u from U [0, 1];

if u ≤ α(x,y) then

let Xt = y;

else

Xt = x;

end

if t > tmix(ε; X0) then

Round Xt to its nearest point in Zd to get X̄t;

Output X̄t;

end

end

First, we state a well known theorem which is true in general for an Independent

Metropolis-Hastings algorithm.

Theorem 2. (Theorem 2.1 in [21]) An Independent Metropolis-Hastings algorithm is

uniformly ergodic if there exist δ > 0 such that

π(x)

π̄(x)
≥ δ for all x ∈ X , (3.4)

where π is the density from which proposed state is generated, and π̄ is the target density.

That is, the transition kernel P̄ of the IMH Markov chain satisfies the following:

‖P̄ k(x, ·)− π̄(·)‖TV ≤ (1− δ)k for all x ∈ X .
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Now we will give conditions on the probability density π that guarantees uniform

ergodicity for Algorithm 5.

Proposition 3. Let π and π̄ be as defined in (3.2) and (3.3) respectively. Let x̄ denote

the nearest integer point to x. If ϕ is an L-smooth function, then for all x ∈ Rd we have,

π(x)

π̄(x)
=
Z

K

e−ϕ(x)(1 + e2(x−x̄)T∇ϕ(x̄))

2e−ϕ(x̄)
≥ Z

K
e−

dL
8 > 0. (3.5)

Therefore, by Theorem 2, Algorithm 5 is uniformly ergodic for such a π.

Proof. Let y = x− x̄. Then,

π(x)

π̄(x)
=
Z

K

eϕ(x̄)−ϕ(x̄+y)(1 + e2yT∇ϕ(x̄))

2

(a)

≥ Z

K

e−y
T∇ϕ(x̄)−L

2
‖y‖2(1 + e2yT∇ϕ(x̄))

2

=
Z

K

e−
L
2
‖y‖2(ey

T∇ϕ(x̄) + e−y
T∇ϕ(x̄))

2
(b)

≥ Z

K
e−

L
2
‖y‖2

(c)

≥ Z

K
e−

dL
8 > 0,

where (a) follows from (2.6) due to L-smoothness of ϕ, (b) is due to AM-GM inequality

and (c) is because y ∈ [−1
2 ,

1
2 ]d.

Therefore, if π is such that ϕ is L-smooth, then the transition kernel P̄ of Algorithm 5

satisfies the following inequality:

‖P̄ k(x, ·)− π̄(·)‖TV ≤
(

1− Z

K
e−

dL
8

)k
for all x ∈ Rd.

Corollary 2. If π is a Gaussian density, then Algorithm 5 produces a uniformly ergodic

Markov chain.

3.1.2 Effect of non-ideality of ALG

As defined in the previous section, ALG denotes the method used to draw samples from

π in Algorithm 5. For the analysis in this section, we suppose that ALG is an MCMC

method. In practice, ALG could be methods like HMC or MALA. By non-ideality of
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ALG, we mean that the TVD between the probability distribution from which ALG

generate samples and π is nonzero. The non-ideality mentioned above can occur due

to the finite time given for convergence in ALG. On account of this non-ideality, the

proposed state in Algorithm 5 will have a probability distribution different from the

one used in the calculation of acceptance ratio (which is π). This alters the stationary

distribution of Markov chain associated with Algorithm 5.

Suppose the Markov chain associated with ALG is geometrically ergodic for the

stationary distribution π. In that case, we show in the following proposition that the

error due to non-ideality of ALG can be bounded. For a discussion on the conditions

under which methods like HMC and MALA are geometrically ergodic, we refer the reader

to [22], [20].

Proposition 4. Let π defined in (3.2) be such that ϕ is L-smooth. Let t ∈ Rd be a

fixed initial state of ALG. Suppose ALG satisfies the following geometric ergodicity

condition.

‖Pn(t, ·)− π(·)‖TV ≤ V ρn, (3.6)

where P is the transition kernel corresponding to ALG. (V in the above expression may

depend on the fixed initial state t.) Also, let P be such that π � P (t, ·) and P (t, {t}) > 0.

Then for any x ∈ Rd, Algorithm 5 generates a Markov chain with transition kernel P̄

that satisfies the following inequality:

‖P̄ k(x, ·)− π̄(·)‖TV ≤ (1− Cδ)k +

(
1 +

1

Cδ

)
V ρn

δ
, (3.7)

where π̄ is the target distribution defined in (3.3), δ is obtained from (3.4), n is the

number of iterations of ALG, k is the number of iterations of Algorithm 5, and C is a

constant that satisfies the following inequality:

1− 2V ρn

δ
≤ C ≤ 1 +

2V ρn

δ
. (3.8)

Proof. Let us denote Pn(t, ·) by q(·). By geometric ergodicity of ALG we have,

‖q − π‖TV ≤ V ρn. (3.9)

Although ALG generates the proposed state from the distribution q, for calculating

the acceptance ratio, we use the distribution π. Hence, the Markov chain generated by

Algorithm 5 has the following transition kernel

P̄ (x, dy) = q(dy)

(
1 ∧ π̄(y)π(x)

π̄(x)π(y)

)
+ δx(dy)

(
1−

∫
Rd
q(dz)

(
1 ∧ π̄(z)π(x)

π̄(x)π(z)

))
,
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where δx(·) is the delta measure at x. It is straightforward to verify using the detailed

balance equation that the stationary distribution of the above Markov chain with tran-

sition kernel P̄ is given by

ν(dx) =
π̄(x)q(dx)

Cπ(x)
, (3.10)

where

C =

∫
Rd

π̄(x)q(dx)

π(x)
. (3.11)

Also, since ϕ is L-smooth, from Proposition 3, we have

π(x)

π̄(x)
≥ δ > 0. (3.12)

The first step in this proof is to show that the above Markov chain with transition

kernel P̄ is uniformly ergodic. Then we show that its stationary distribution ν and

probability density π̄ are statistically close. These two results are combined to obtain

the result stated in Proposition 4.

Uniform Ergodicity of P̄ :

From the expression for P̄ , for all x ∈ Rd and all measurable A ⊆ Rd, we have

P̄ (x, A) ≥
∫
A
q(dy)

(
1 ∧ π̄(y)π(x)

π̄(x)π(y)

)
(a)
=

∫
A
Cν(dy)

π(y)

π̄(y)

(
1 ∧ π̄(y)π(x)

π̄(x)π(y)

)
=

∫
A
Cν(dy)

(
π(y)

π̄(y)
∧ π(x)

π̄(x)

)
(b)

≥ Cδ

∫
A
ν(dy) = Cδν(A),

where (a) and (b) are due to (3.10) and (3.12) respectively. Thus by Theorem ??, P̄ is

the transition kernel of a uniformly ergodic Markov chain. Therefore,

‖P̄ k(t, ·)− ν(·)‖TV ≤ (1− Cδ)k. (3.13)

Next, we find a bound on the value of C. Note that from the assumption P (t, {t}) > 0,

it follows that for any measurable set A ⊆ Rd and integer n, Pn(t, A) > 0 whenever

P (t, A) > 0. Therefore, P (t, ·) � q. This, together with the assumption π � P (t, ·),
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allows us to conclude that π � q. Therefore, we have the following:

1 =

∫
Rd
π̄(dx)

(a)
=

∫
Rd

π̄(x)

π(x)
π(dx)

(b)
=

∫
Rd

π̄(x)

π(x)

dπ

dq
(x)q(dx),

(3.14)

where (a) follows from the fact that π and π̄ are density functions which are positive

everywhere and (b) is due to the absolute continuity of π with respect to q. Then,

|C − 1| (a)
=

∣∣∣∣∫
Rd

π̄(x)

π(x)
q(dx)−

∫
Rd

π̄(x)

π(x)

dπ

dq
(x)q(dx)

∣∣∣∣
=

∣∣∣∣∫
Rd

π̄(x)

π(x)

(
1− dπ

dq
(x)

)
q(dx)

∣∣∣∣
≤
∫
Rd

π̄(x)

π(x)

∣∣∣∣1− dπ

dq
(x)

∣∣∣∣ q(dx)

≤ 1

δ

∫
Rd

∣∣∣∣1− dπ

dq
(x)

∣∣∣∣ q(dx)

(b)
=

2

δ
‖q − π‖TV

≤ 2V ρn

δ
,

where (a) follows from (3.11) and (3.14), and (b) is due to the alternate definition of

TVD given in (1.4). Therefore, we have

δ − 2V ρn ≤ Cδ ≤ δ + 2V ρn

=⇒ 1− 2V ρn

δ
≤ C ≤ 1 +

2V ρn

δ
.

(3.15)

TVD between ν and π̄:
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Now we will show that ν and π̄ are statistically close probability distributions.

‖ν − π̄‖TV
(a)
=

1

2

∫
Rd

∣∣∣∣dνdq (x)− dπ̄

dq
(x)

∣∣∣∣ q(dx)

=
1

2

∫
Rd

∣∣∣∣ π̄(x)

Cπ(x)
− π̄(x)

π(x)

dπ

dq
(x)

∣∣∣∣ q(dx)

=
1

2C

∫
Rd

π̄(x)

π(x)

∣∣∣∣1− Cdπdq (x)

∣∣∣∣ q(dx)

≤ 1

2Cδ

∫
Rd

∣∣∣∣1− Cdπdq (x)

∣∣∣∣ q(dx)

≤ 1

2Cδ

∫
Rd

(
C

∣∣∣∣1− dπ

dq
(x)

∣∣∣∣+ |C − 1|
)
q(dx)

=
1

δ
‖q − π‖TV +

|C − 1|
2Cδ

(b)

≤ V ρn

δ
+
V ρn

Cδ2
,

(3.16)

where (a) is due to the alternate definition of TVD given in (1.4), and (b) is due to (3.9)

and (3.15).

Finally using triangle inequality, we have

‖P̄ k(t, ·)− π̄(·)‖TV ≤ ‖P̄ k(t, ·)− ν(·)‖TV + ‖ν − π̄‖TV

≤ (1− Cδ)k + (1 +
1

Cδ
)
V ρn

δ
.

(3.17)

3.1.3 Simulation Results

This section illustrates the speed of convergence of Algorithm 5 to PZd . For this, ideally

we would like to show plots of TVD as a function of the number of iterations. However,

evaluating distance between high dimensional probability distributions is computation-

ally hard. So, in our simulations, we compute an entity TVDm instead of TVD. We

compute TVDm as follows: Initialize Algorithm 5 with a fixed point in the state space.

Then we run t iterations of Algorithm 5. Repeat this 100,000 times for each value of t.

For each t, use these samples to form d 1-dimensional histograms, one for each coordi-

nate. We call the distributions obtained by normalizing the histograms as the empirical

marginal distributions, denoted by hi(z) for 1 ≤ i ≤ d and z ∈ Z. We denote the ith

marginal distribution of PZd by P iZ. If P iZ is not available in closed form, we estimate it
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using RWRM algorithm, with sufficient time given for convergence. Calculate the Total

Variation Distance between hi and P iZ using the following formula:

TVD(i) =
1

2

∑
z∈Z
|hi(z)− P iZ(z)| for 1 ≤ i ≤ d.

Finally, TVDm is the maximum of TVD’s calculated for marginal distributions.

TVDm = max{TVD(i) : 1 ≤ i ≤ d}.

We plot TVDm for different values of t. The TVDm vs. t plots depicts the number of

iterations required for Algorithm 5 to converge to its stationary distribution. However,

we would like to assert that convergence inTVDm is only a heuristic; it does not, in

general, imply convergence in TVD.

In another simulation, we plot the autocorrelation function (ACF) of the time series

x0,x1, · · · ,xN obtained using Algorithm 5. In many instances, autocorrelation plots

have been used to assess the number of iterations of the Markov chain required to

produce two almost independent samples [19]. The definition of the autocorrelation

function that we use is as follows:

ACF(τ) =

∑N−τ
t=1 xTt xt+τ∑N
t=1 xTt xt

,

where xt is the state of the Markov chain at iteration t and N is the total number of

samples in the time series. Now we present results of these simulations for different

probability densities π.

Isotropic Gaussian distribution

We first consider the case when π is an isotropic Gaussian density. The potential function

ϕ of an isotropic Gaussian density is 1
σ2 -smooth, where σ2 is the variance of the Gaussian.

Therefore, from Proposition 3, we see that the factor that governs the rate of convergence

of Algorithm 5 is r = d
σ2 . In this simulation, we fix σ2 = 1 and vary dimension d to get

different values of r. We use state 0 as the initial state of the algorithm. TVDm vs. t for

different values of r is shown in Figure 3.2. Autocorrelation vs. τ is shown in Figure 3.3.

The number of samples (N) used to calculate the autocorrelation function is 10,000.
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Figure 3.2: TVDm vs. Number of Iterations (t) for isotropic Gaussian

Figure 3.3: ACF vs τ for isotropic Gaussian

Gaussian distribution on the Leech lattice

Next, we consider a lattice Gaussian distribution supported on the Leech lattice with

dimension equal to 24 (see pg.133 in [23] for the generator matrix of the Leech lattice).

This simulation illustrates the performance of Algorithm 5 for non-isotropic Gaussian.

The Leech lattice induces a highly skewed lattice Gaussian distribution on Zd. The

density π now takes the following form:

π(x) = Me−
‖Bx‖2

2σ2 for all x ∈ Rd,
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where B is the generator matrix of the Leech lattice and M is the normalization constant.

We plot TVDm vs. t for different values of σ2. This is shown in the Figure 3.4. State 0

was used as the initial state of the algorithm.

Figure 3.4: TVDm vs. Number of Iterations (t) for a Gaussian distribution on the Leech

lattice

Perfect Security distribution

Finally, we present the simulation results when π is the following probability density

which was used to achieve perfect security in [3]. The probability density function of a

“Perfect Security distribution” is given by:

π(x) = M

 Ωd(
‖x‖
2ρ )

j2
d−2
2

− ‖x‖
2

4ρ2

2

for all x ∈ Rd,

where

Ωd(u) =

(
2

u

) d−2
2

J d−2
2

(u),

Jk(u) is the Bessel function of kth order and jk is the first zero of kth order Bessel function

and M is the normalization constant. Note that here, π is not positive everywhere on

Rd. The theoretical guarantees that we derived for Algorithm 5 are not applicable for

this distribution. Let X = [X1, X2, · · · , Xd] be a random vector with perfect security

probability distribution. Then, the variance of each component Xi is given by the
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following equation [24]:

Var(Xi) =
4ρ2j2

d−2
2

d
.

We use HMC to sample from this continuous density π. We plot TVDm vs. t for different

values of d. We fix the value of ρ such that the variance of the distribution is 1 for each

value of d. The TVDm vs. t plot is shown in Figure 3.5. State 0 was used as the initial

state of the algorithm.

Figure 3.5: TVDm vs. Number of Iterations (t) for Perfect Security distribution

3.2 Continuous Relaxation based Hamiltonian Monte Carlo

(CRHMC)

A drawback of Algorithm 5 is that we need a sub-routine ALG when sampling from

lattice distributions beyond lattice Gaussians. As already mentioned, ALG itself can be

an MCMC method. For Algorithm 5 to produce samples from the target distribution, we

must run a sufficient number of iterations of ALG within Algorithm 5. This introduces

an extra parameter that needs to be chosen, which is the number of iterations of ALG.

In this section, we introduce a reduction of the overall algorithm when ALG is HMC,

by which we can avoid the extra parameter mentioned above.

In CRHMC, the idea is to use Hamiltonian dynamics with ϕ defined as in (3.2) to

generate a proposed state. The Metropolis-Hastings acceptance step is done with π̄

defined in (3.3) as the target distribution. As in HMC, to ensure ergodicity, we need
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to resample momentum variables after each iteration. Algorithm 6 describes the steps

involved in CRHMC.

Algorithm 6: CRHMC

Input: X0, ϕ,∇ϕ, σ, ε, L
Output: A sample approximately from PZd

for t = 1, 2, . . . do

Let x be the state of Xt−1;

Sample p0 from N (0, σ2Id);

(y,p)←Algorithm 1(x,p0, ε, L, σ,∇ϕ);

x̄← [x]; ȳ← [y];

π̄(x) = 2 exp(−ϕ(x̄))
1+exp(2(x−x̄)T∇ϕ(x̄))

;

π̄(y) = 2 exp(−ϕ(ȳ))
1+exp(2(y−ȳ)T∇ϕ(ȳ))

;

α((x,p0), (y,p)) = 1 ∧ π̄(y)
π̄(x) exp

(
‖p0‖2−‖p‖2

2σ2

)
;

Generate a sample u from U [0, 1];

if u ≤ α((x,p0), (y,p)) then

Xt ← y;

else

Xt ← x;

end

if t > tmix(ε; X0) then
Output [Xt]

end

end

In Algorithm 6, if we use − log(π̄) as the potential energy in Hamiltonian dynamics,

it is precisely the HMC algorithm. However, since − log(π̄) is a discontinuous function,

it is not feasible to run Hamiltonian dynamics with − log(π̄) as the potential energy. The

probability density π can be seen as a continuous relaxation of π̄. So, in Algorithm 6 we

use − log(π) as the potential energy in the Hamiltonian dynamics and hence the name

Continuous Relaxation based HMC (CRHMC). The TVDm vs. t plot of CRHMC for

sampling from Perfect Security distribution shown in Figure 3.6.
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Figure 3.6: TVDm vs. Number of Iterations (t) for Perfect Security distribution

3.3 Discussion

We presented a simple MCMC algorithm to draw samples from lattice distributions.

As demonstrated through the Perfect Security distribution sampling, Algorithm 5 can

sample from distributions beyond lattice Gaussians. To the best of our knowledge, prior

to this work, there were no efficient algorithms known to generate samples from lattice

distributions other than lattice Gaussians. The main feature of Algorithm 5, which

makes it competitive even among the lattice Gaussian sampling algorithms, is its com-

putational efficiency. The computations in Algorithm 5 are vector operations, which is

highly optimized when current linear algebra libraries (for instance, OpenBLAS or Intel

MKL) are used for implementation. Most of the algorithms currently available for sam-

pling from a lattice Gaussian do coordinate-wise sequential sampling using 1-dimensional

lattice Gaussian samplers. This method is inefficient when the lattice dimension under

consideration is large.

A popular algorithm for sampling from lattice Gaussians is Klein’s algorithm [9], [1].

In Figure 3.7, we compare the run-time required per sample generated for Klein’s algo-

rithm and Algorithm 5 for different values of dimension when the desired distribution is

a lattice Gaussian on Zd with variance parameter σ = 1. This experiment was run in a

python environment on a machine with Intel i7-6700 @ 3.40GHz CPU and 8GB RAM.

In simulations, we observe that the scaling of the run-time per iteration with dimen-

sion is much better for Algorithm 5. However, multiple iterations of Algorithm 5 are

required to generate a sample approximately from the stationary distribution, whereas
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Klein’s algorithm is not iterative. This gives rise to comparable run-time per sample for

Klein’s algorithm and Algorithm 5, as shown in Figure 3.7. The number of iterations of

Algorithm 5 used was the minimum required to bring the TVDm below 0.005.

Figure 3.7: Run-time per sample vs Dimension for isotropic lattice Gaussian

Figure 3.8: Average Acceptance vs Dimension for isotropic lattice Gaussian

From Proposition 3, we see that when π is an isotropic Gaussian density with vari-

ance equal to σ2, the TVD between the probability distribution after kth iteration of

Algorithm 5 and the stationary distribution is upper bounded by (1− Z
K e
− d

8σ2 )k. This in-

dicates that our algorithm may not be well suited for distributions with very low variance
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and high dimension. Figures 3.2 and 3.4 validate this by illustrating that convergence

is slow for low variance and high dimension cases. In simulations, we observe that at

high dimensions, the average acceptance, which is the fraction of iterations in which the

proposed state is accepted, becomes very low for Algorithm 5. Figure 3.8 shows the

degradation of average acceptance with dimension. A low acceptance ratio makes the

Independent Metropolis-Hastings algorithm inefficient due to frequent rejection of the

proposed state. Therefore, at very high dimensions, we suggest using the Metropolis-

within-Gibbs strategy [25]. In the Metropolis-within-Gibbs algorithm, the number of

variables updated at a time, determines the average acceptance.
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Conclusion

We have discussed multiple methods for drawing samples from lattice distributions.

First, we presented IMHRZ, an Independent Metropolis-Hastings algorithm. IMHRZ

can be proved to be uniformly ergodic under certain conditions on the target distribution.

However, implementing IMHRZ required evaluating an integral whose dimension is the

same as the lattice distribution dimension. This made IMHRZ practically infeasible

at high dimensions. Then we looked at RWRM, which is a Symmetric Metropolis-

Hastings algorithm. RWRM is a simple algorithm and is geometrically ergodic for sub-

exponential target distributions. Then we moved on to algorithms with continuous

state-space. We introduced the IMHR algorithm, which is uniformly ergodic for a class

of target distributions. We also introduced an algorithm called CRHMC. Out of these,

IMHR and RWRM are computationally most efficient. For lattice Gaussians, the IMHR

algorithm converges the fastest. Figure 4.1 shows the comparison of TVDm for IMHR

and RWRM algorithms. In the simulation, distribution π is the unit variance Isotropic

Gaussian distribution with dimension equal to 20.

The IMHR algorithm works well in practice, even for distributions like Perfect Se-

curity distribution, although there are no theoretical guarantees. Further, the CRHMC

method can be helpful for sampling from lattice distributions beyond lattice Gaussians.

CRHMC shows performance similar to the IMHR algorithm. A disadvantage of all the

methods discussed in this part is that convergence is slow for low variance and high

dimension cases.
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Figure 4.1: TVDm vs. Number of Iterations (t) for Isotropic Gaussian distribution

4.1 Future Work

One of the open questions is if it is possible to derive an accurate estimate for the

mixing time of the IMHR algorithm as a function of d and L? Also, the guarantees of

uniform ergodicity are given only when exact samples can be drawn from the probability

distribution π. It is an open question if it is possible to find other MCMC algorithms

for which exponential convergence can be proved without such assumptions? Deriving

the convergence rate of CRHMC is another work that can be taken up in the future.

However, it is a technical challenge to analyze algorithms that are based on Hamiltonian

Monte Carlo.
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Part II

Uniform Sampling from Birkhoff

Polytope
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Chapter 5

An Alternative to the Sinkhorn

Algorithm

In this part, we examine the problem of sampling uniformly from the set of all d × d
doubly stochastic matrices. A doubly stochastic matrix (DSM) is a non-negative matrix

in which the row sums and column sums are equal to 1. We denote the set of all d× d
DSMs byMd. The setMd is known as the Birkhoff polytope. A well-known theorem by

Birkhoff states that Md is the convex hull of the set of all d× d permutation matrices.

In operations research, the following is known as the assignment problem: Find the

permutation σ that minimizes
∑

iCiσ(i) for a cost matrix Cij . This is equivalent to

minimizing
∑

i,j CijMij for M ∈ Md. Thus, the Birkhoff polytope turns out to be the

feasible set for the assignment problem [26].

Any Markov chain has a uniform stationary distribution if and only if its transi-

tion probability matrix is doubly stochastic. Thus, sampling uniformly from Birkhoff

polytope helps study typical Markov chains with uniform stationary distribution [26].

Furthermore, such an algorithm can also be useful in sampling contingency tables and

developing randomized algorithms for convex optimization problems [27].

MCMC methods for sampling from convex, compact sets in Rd have been studied

extensively in the literature. Ball walk, Hit and run algorithm, Riemannian Hamiltonian

Monte Carlo, etc., are some examples of algorithms used to sample from compact, convex

bodies [27]. A simple method specialized for sampling from Birkhoff polytope is a Gibbs

sampling algorithm [28]. In this algorithm, in each step, two columns and two rows are

selected randomly. The elements at the intersection of these rows and columns are then

sampled from their conditional distribution.
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We take a different approach for sampling uniformly from the Birkhoff polytope. In

this work, we study iterative algorithms that converge to a DSM starting from a positive

matrix. A well-known algorithm that achieves this is the Sinkhorn algorithm [29], [30].

If the entries of the initial matrix are randomly sampled, this will induce a probability

distribution on the DSM that we obtain by running the algorithm. We aim to study and

develop algorithms that converge to a DSM starting from a positive initial matrix. We

also would like to identify the distribution from which the entries of the initial matrix

are to be sampled so that such an algorithm will converge to a DSM whose distribution

is uniform on the Birkhoff polytope.

5.1 Sinkhorn Algorithm

Let D(·) denote a diagonal matrix with its argument as the diagonal. Given a non-

negative matrix A, does there exist a DSM B of the form D(r)AD(c) for some vectors r

and c ? Let A = (aij) be a d×d matrix and σ be a permutation of {1, 2, · · · , d}. Then, a

diagonal of the matrix A is defined as the sequence of elements a1σ(1), a2σ(2), · · · , adσ(d).

Then, the necessary and sufficient condition for the existence of positive vectors r and

c such that B = D(r)AD(c) is a DSM is that A 6= 0 and every positive element of A

lies on a positive diagonal [29]. The DSM B is unique if it exists. The matrix A is fully

indecomposable is if there do not exist permutation matrices P and Q such that

PAQ =

[
B C

0 D

]
,

where B and D are square matrices. Vectors r and c are unique upto a scalar multiple

if and only if A is fully indecomposable.

When the initial matrix A satisfies certain conditions, the Sinkhorn algorithm pro-

duces a sequence of matrices that converges to a DSM of the form D(r)AD(c). Let A be

a non-negative initial matrix. Then in the Sinkhorn algorithm, a matrix A1 is obtained

by normalizing the rows of matrix A by their sums. Matrix A2 is then obtained by

normalizing the columns of A1 by their sums. This process is continued to generate a

sequence of matrices {An}. The sequence An converges to a doubly stochastic matrix

if and only if the initial matrix A has a positive diagonal. The Sinkhorn algorithm

converges to B if there exists DSM B of the form D(r)AD(c).

An equivalent way to conceive Sinkhorn algorithm is to look at the fixed point equa-

tion. Suppose there exists positive vectors r and c such that B = D(r)AD(c) is a DSM.
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Then we have Be = e and BT e = e, where e is the all one’s vector. This gives us the

fixed point equations r = 1
Ac and c = 1

AT r
, where 1

x denotes the element-wise inverse of

vector x. This naturally gives us the following iteration equations:

ck+1 =
1

AT rk
,

rk+1 =
1

Ack+1
.

The convergence of the Sinkhorn algorithm was proved using a variety of methods.

A survey of various methods are given in [31]. The unpublished work [32], shows that

for any permutation σ of {1, 2, · · · , d}, Iσ =
∏d
i=1

aiσ(i)
aii

is an invariant of the Sinkhorn

algorithm. Moreover, [33] and [32] shows that these invariants completely determine

the DSM that the Sinkhorn algorithm converges to. It is easy to verify that Iσ is an

invariant for any algorithm that proceeds by normalizing rows and columns. Hence,

if it converges, any such algorithm has the same limit point as that of the Sinkhorn

algorithm.

Since we are interested in sampling from Birkhoff polytope, we would like to study the

probability distribution that induces uniform distribution on the output of the Sinkhorn

algorithm. It was shown in [34] that if the entries of the initial matrix are chosen

independently, the distribution that the Sinkhorn algorithm induces on the Birkhoff

polytope would not be uniform. For 2 × 2 case, [32] shows that choosing the entries in

the following way would induce a uniform distribution: Choose a11 and a12 independently

from the squared uniform distribution, fix a21 = 1− a11 and a22 = 1− a12. But, how to

achieve this for higher dimension cases is not clear.

In the rest of this chapter, we explore other possible algorithms that converge to

DSMs. We want algorithms to converge to a different DSM from what the Sinkhorn

algorithm converges to, starting from the same initial matrix. This is hoping that we

might be able to find distributions for the initial matrix such that the algorithm induces

a uniform distribution on the Birkhoff polytope.

5.2 An alternative to the Sinkhorn algorithm

We describe an algorithm that converges to a different DSM than the Sinkhorn algorithm,

starting from the same initial matrix. Let A = (aij) be a non-negative matrix with

positive main diagonal. Let A0 = (aij,0) = A. Then we form a sequence of matrices

An = (aij,n) as follows:
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Let Ri,n+1 and Cj,n+1 denote the ith row sum and jth column sum of An respectively.

That is, for every 1 ≤ i, j ≤ d we have

Ri,n+1 =
d∑
j=1

aij,n,

Cj,n+1 =
d∑
i=1

aij,n.

(5.1)

Then obtain entries of An+1 as:

aij,n+1 =


aij,n

Ri,n+1Cj,n+1
, if i 6= j

aij,n
Rαi,n+1C

1−α
j,n+1

, otherwise,

where 0 < α < 1. Recursively substituting for the values of aij,n+1 in (5.1), we get

Ri,n+1 =
∑
j 6=i

aij∏n
k=1Ri,kCj,k

+
aii∏n

k=1R
α
i,kC

1−α
i,k

,

Cj,n+1 =
∑
i 6=j

aij∏n
k=1Ri,kCj,k

+
ajj∏n

k=1R
α
j,kC

1−α
j,k

,
(5.2)

for every 1 ≤ i, j ≤ d. Let Pi,n =
∏n
k=1Ri,k and Qj,n =

∏n
k=1Cj,k. Then (5.2) gives

Pi,n+1 =
∑
j 6=i

aij
Qj,n

+ aii

(
Pi,n
Qi,n

)1−α
,

Qj,n+1 =
∑
i 6=j

aij
Pi,n

+ ajj

(
Qj,n
Pj,n

)α
,

(5.3)

for every 1 ≤ i, j ≤ d. Let Pn = [P1,n, P2,n, · · · , Pd,n]T and Qn = [Q1,n, Q2,n, · · · , Qd,n]T .

Let vector u denote the diagonal of A and let V denote the matrix obtained by forcing

the principal diagonal of A to be zero. That is,

V =


0 a12 · · · a1d

a21 0 · · · a2d

...
...

. . .
...

ad1 ad2 · · · 0

 .

Also let � denote the element-wise multiplication operation between two vectors. Entries

of the vector 1
x are the inverse of elements of the vector x. Exponentiation of a vector is
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defined as the element-wise exponentiation. Then (5.3) gives

Pn+1 = u�
(
Pn �

1

Qn

)1−α
+ V

1

Qn
,

Qn+1 = u�
(
Qn �

1

Pn

)α
+ V T 1

Pn
.

(5.4)

In simulations we observe that this algorithm converges starting from a positive matrix

A. In the next section, we analytically prove the convergence of this algorithm in the

special case when A is a symmetric matrix.

5.2.1 Convergence when A is a symmetric matrix

When A is symmetric, we see that Rk,n = Ck,n and hence Pk,n = Qk,n for each 1 ≤ k ≤ d.

Thus, (5.4) reduces to

Pn+1 = u+ V
1

Pn
. (5.5)

To show that the row and column sums Rk,n converges to 1 as n→∞, it suffices to show

that the sequence (Pk,n)n∈N converges to a positive value. Let the function g : Rd+ → Rd+
be defined as

g(x) = u+ V
1

u+ V 1
x

.

Let gm denote the m compositions of the function g. Suppose the iteration gm(x)

converges to a unique fixed point as m → ∞. Then the even and odd subsequences of

the sequence (Pn)n∈N converges and the limit is the fixed point of the mapping g. Since

the limit is same, we conclude that the sequence (Pn)n∈N converges. Before proving that

gm(x) converges to a unique fixed point as m→∞, a few definitions are in order. The

following development is based on chapter 1 and 2 in [35].

Definition 5. (Cone) Let S be a finite dimensional vector space. A subset K of S is

called a cone if it is convex, µK ⊆ K for all µ ≥ 0 and K ∩ (−K) = {0}.

An example of a cone is the standard positive cone Rd+ = {(x1, x2, · · · , xd) ∈ Rd :

xi ≥ 0 ∀ 1 ≤ i ≤ d}.

Definition 6. (Partial order in a cone) A cone K induces a partial order defined as

x ≤K y if y − x ∈ K. Also denote x�K y if y − x ∈ int(K).

If K = Rd+ then x ≤K y if and only if xi ≤ yi for all 1 ≤ i ≤ d.
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Definition 7. (Parts of a cone) An equivalence relation ∼K on K is defined as x ∼K y

if there exists 0 < α ≤ β such that αy ≤K x ≤K βy. Equivalence classes in K are called

the parts of the cone K. Particularly, int(Rd+) is a part of the cone Rd+.

Definition 8. (Order preserving map) A function f : K → K is order preserving if

x ≤K y implies f(x) ≤K f(y) for all x, y ∈ K.

Definition 9. (Subhomogeneous maps) A map f : K → K is subhomogeneous if

λf(x) ≤K f(λx) for all x ∈ K and 0 < λ < 1. It is said to be strictly subhomogeneous

if λf(x)�K f(λx) for all x ∈ K\{0} and 0 < λ < 1.

Definition 10. (Thompson’s metric) For x, y ∈ K with x ∼K y and y 6= 0, define

M(x/y) = inf{β > 0 : x ≤K βy}. (5.6)

Thompson’s metric dT : K ×K → [0,∞] is defined by

dT (x, y) =


log(max{M(x/y),M(y/x)}) , if x ∼K y and y 6= 0

0 , if x, y = 0

∞ , otherwise.

Claim 1. Thompson’s metric dT is a genuine metric on each part of a closed cone K.

Proof. • Positivity: We need to show that dT (x, y) ≥ 0 and dT (x, y) = 0 if and only

if x = y. First we make the following observation:

M(y/x) = inf{β > 0 :
1

β
y ≤K x}

= sup{α > 0 : αy ≤K x}−1

≥ 1

M(x/y)
.

=⇒ max{M(y, x),M(x, y)} ≥ 1

=⇒ dT (x, y) ≥ 0.

We also have M(x/x) = 1, which gives dT (x, x) = 0. Now let dT (x, y) = 0.

=⇒ M(x/y) = M(y/x) = 1

=⇒ x ≤K (1 + ε)y and y ≤K (1 + ε)x for all ε > 0

=⇒ y − x+ εy, x− y + εx ∈ K for all ε > 0

=⇒ y − x, x− y ∈ K [∵ K is closed]

=⇒ x = y.
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• Symmetry: We need to show that dT (x, y) = dT (y, x). But this is trivial from the

definition of dT .

• Triangle inequality: We need to show that dT (x, z) ≤ dT (x, y) +dT (y, z). We have

x ≤K αy and y ≤K βz for all α > M(x/y) and β > M(y/z).

=⇒ x ≤K αβz

=⇒ M(x/z) ≤ αβ for all α > M(x/y) and β > M(y/z)

=⇒ M(x/z) ≤M(x/y)M(y/z).

Thus,

max{M(x/z),M(z/x)} ≤ max{M(x/y)M(y/z),M(y/x)M(z/y)}

≤ max{M(x/y),M(y/x)}max{M(y/z),M(z/y)}

=⇒ dT (x, z) ≤ dT (x, y) + dT (y, z).

Lemma 1. Suppose K is the standard positive cone Rd+. Then, for all x, y ∈ int(Rd+) we

have dT (x, y) = ‖L(x)− L(y)‖∞, where L denotes the element-wise logarithm operation

on a vector.

Proof. When K = Rd+, we have

M(x/y) = inf{β > 0 : x ≤K βy}

= inf{β > 0 : xi ≤ βyi ∀ 1 ≤ i ≤ d}

= max

{
xi
yi

: 1 ≤ i ≤ d
}
.

Thus,

dT (x, y) = log(max{M(x/y),M(y/x)})

= log

(
max

{
xi
yi
∨ yi
xi

: 1 ≤ i ≤ d
})

= max

{
log

(
xi
yi

)
∨ log

(
yi
xi

)
: 1 ≤ i ≤ d

}
= max{| log(xi)− log(yi)| : 1 ≤ i ≤ d}

= ‖L(x)− L(y)‖∞,

where L is the element-wise logarithm operation on a vector.
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Lemma 2. Let X = int(Rd+). If E ⊆ X is compact in (X, ‖ · ‖∞), then it is compact in

(X, dT ).

Proof. Let E ⊆ X be compact in (X, ‖ · ‖∞).

The element-wise logarithm function L : (X, ‖ · ‖∞)→ (Rd, ‖ · ‖∞) is continuous. Then,

for every x ∈ X and ε > 0 there exits δ > 0 such that

‖L(y)− L(x)‖∞ < ε whenever ‖y − x‖∞ < δ and y ∈ X.

Thus by Lemma 1, for every x ∈ X and ε > 0 there exits δ > 0 such that

dT (y, x) < ε whenever ‖y − x‖∞ < δ and y ∈ X.

This implies that the identity function I : (X, ‖ · ‖∞) → (X, dT ) is continuous. Since

the image of a compact set under a continuous function is compact, we have E = I(E)

compact in (X, dT ).

In fact, (int(Rd+), dT ) is a complete metric space and its topology coincides with the

norm topology [35].

Definition 11. (Contraction) A mapping f from a metric space (X, d) to itself is a

contraction if

d(f(x), f(y)) < d(x, y) for all x, y ∈ X,x 6= y. (5.7)

Lemma 3. (Lemma 2.1.7 in [35]) Let K be a closed cone. If f : int(K) → int(K) is

order-preserving and strictly subhomogeneous, then f is a contraction.

Proof. Let x, y ∈ int(K), and x 6= y. Then, dT (x, y) = log(λ) for some λ > 1. Also since

K is closed, we have x ≤K λy and y ≤K λx. Thus,

1

λ
f(x)�K f(

x

λ
) ≤K f(y),

1

λ
f(y)�K f(

y

λ
) ≤K f(x).

=⇒ max{M(f(x)/f(y)),M(f(y)/f(x))} < λ

=⇒ dT (f(x), f(y)) < log(λ) = dT (x, y).
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We will work on the standard positive cone Rd+. It is easy to see that g is order-

preserving on Rd+. Let x ≤K y and let v1, v2, · · · , vd denote the rows of the matrix V .

Then,

g(y)− g(x) = V

[
1

u+ V 1
y

− 1

u+ V 1
x

]

= V


<v1,

1
x
− 1
y
>

(u1+<v1,
1
x
>)

(
u1+<v1,

1
y
>
)

...
<vd,

1
x
− 1
y
>

(ud+<vd,
1
x
>)

(
ud+<vd,

1
y
>
)


∈ Rd+.

Hence g(x) ≤K g(y). Therefore g is order-preserving. We can also show that g is strictly

subhomogeneous. For 0 < λ < 1, we have

g(λx)− λg(x) = (1− λ)u+ λV

[
1

λu+ V 1
x

− 1

u+ V 1
x

]

= (1− λ)u+ λV


(1−λ)u1

(λu1+<v1,
1
x
>)(u1+<v1,

1
x
>)

...
(1−λ)ud

(λud+<vd,
1
x
>)(ud+<vd,

1
x
>)


∈ int(Rd+).

Hence λg(x) �K g(λx). Thus by Lemma 3, g is a contraction on (int(Rd+), dT ). Now

we use the following theorem to show that iteration gk(x) converges for all x ∈ int(Rd+).

Theorem 3. (Theorem 3.2.2 in [35]) If f : X → X is a contraction on a compact metric

space, then there exists a unique x∗ ∈ X such that f(x∗) = x∗ and limk→∞ f
k(x) = x∗

for all x ∈ X.

Proof. Let w(x) denote the set of all subsequential limits of fk(x). Since X is a compact

metric space, every infinite subset of X has a limit point in X. Hence w(x) is non-empty.

Let x∗ ∈ w(x). Then there exists a subsequence fki(x) that converges to x∗. Also, since
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f is a contraction, it is continuous, which implies that fki+1(x)→ f(x∗). Then,

d(x∗, f(x∗)) ≤ d(x∗, fki(x)) + d(fki(x), fki+1(x)) + d(fki+1(x), f(x∗))

≤ lim
i→∞

d(fki(x), fki(f(x)))

≤ lim
i→∞

d(fki−1(f(x)), fki−1(f2(x))) [∵ f is a contraction]

≤ d(f(x∗), f2(x∗)) [∵ Triangle inequality].

If f(x∗) 6= f2(x∗), we have d(f(x∗), f2(x∗)) < d(x∗, f(x∗)) which is a contradiction.

Thus, f(x∗) = f2(x∗) and hence x∗ = f(x∗). Thus x∗ is a fixed point of f . Since f

is a contraction, x∗ is unique. Now, compactness of X implies that fk(x) → x∗ for all

x ∈ X.

It can be verified that range of g is a bounded set. Each component gi of g is given

by

gi(x) = ui+ < vi,
1

u+ V 1
x

>

≤ ui+ < vi,
1

u
> .

Thus, we have u ≤K g(x) ≤K u + V 1
u . Thus g(x) lives inside a rectangle. Then g can

be restricted to a compact subset in (int(Rd+), ‖ · ‖∞) which by Lemma 2 is a compact

subset in (int(Rd+), dT ). Therefore the iteration gk(x) converges by Theorem 3.

5.2.2 Numerical Experiments

This section presents a numerical experiment that show that the alternative to the

Sinkhorn algorithm just discussed converge to a DSM different from the one Sinkhorn

algorithm converges to. We consider the case when d equals 2. Let squared uniform

be the probability distribution with density f(x) = 1
2
√
x
, for 0 < x ≤ 1. Let A = (aij)

denote the initial matrix. Then, given an iterative algorithm that converges to a DSM,

our experiment is as follows: Sample the entries a11 and a12 independently and identically

from the squared uniform distribution. Set a21 = 1 − a11 and a22 = 1 − a12. Run the

iterative algorithm to generate DSM, starting from matrix A. Let B = (bij) be the DSM

that the algorithm converges to. Empirically estimate the probability distribution of

b11 by repeating the above procedure multiple times (30,000 times for this experiment).

Figure 5.1 shows the cumulative distribution function (CDF) of b11 when the alternative

to the Sinkhorn algorithm is used for the iteration, for different values of α used in
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(5.1). It also displays the CDF when the Sinkhorn algorithm is used for the iteration.

We observe that the probability distribution of b11 is different when different iterative

Figure 5.1: CDF of b11 for different values of α

algorithms are used to generate DSM. This shows that the alternative to the Sinkhorn

algorithm that we introduced converges to a DSM that is different from the limit point

of the Sinkhorn algorithm.

5.3 Conclusion and Future Work

This work showed that there exist iterative algorithms that converge to a DSM different

from the one Sinkhorn algorithm converges to. There are more possibilities for such

algorithms. For example, let Ri,n+1 and Cj,n+1 be as defined in (5.1). Let a sequence of

matrices An = (aij,n) for n ∈ N be formed as follows:

aij,n+1 =


aij,n

Ri,n+1Cj,n+1
, if i 6= j

aij,n
(Ri,n+1Cj,n+1)p , otherwise.

for every 1 ≤ i, j ≤ d. In numerical experiments, we observe that the sequence (An)n∈N

converge to a DSM when 0 < p ≤ 1 and initial matrix is positive. The matrix to which

this algorithm converges is dependent on the choice of p.

Another possible iterative algorithm is to obtain An = (aij,n) as follows:

aij,n+1 =
aij,n

(1 + wij(Ri,n+1 − 1))(1 + wij(Cj,n+1 − 1))
,
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where 0 < wij ≤ 1 for every 1 ≤ i, j ≤ d. Even this algorithm converges to a DSM

starting from a positive initial matrix. The matrix to which this algorithm converges is

dependent on the choice of wij .

We proved the convergence of the alternative algorithm to Sinkhorn only when the

initial matrix A is symmetric. Convergence for general case is yet to be shown. From

what distribution should we choose the entries of the initial matrix so that any such

iterative algorithm converges to a DSM whose distribution is uniform on the Birkhoff

polytope, is still an open problem.
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Appendix A

Effect of non-ideality of ALG in

IMHRZ

While proving the uniform ergodicity of the IMHRZ algorithm, we assumed that the

method used to draw samples from π, ALG is ideal. Here we analyze the case when

ALG is non-ideal. We assume that ALG itself is an MCMC method. Due to finite time

given for convergence in ALG, the proposal generated will have different probability

distribution from one which is used in the calculation of acceptance ratio. For probability

densities for which ALG is geometrically ergodic, the error due to this non-ideality can

be bounded as shown in the following Proposition.

Proposition 5. Let π be such that ϕ is L-smooth. Let t ∈ Rd be a fixed initial state of

ALG. Also let ALG satisfy the following geometric ergodicity condition

‖Pn(t, ·)− π(·)‖TV ≤ V ρn, (A.1)

where P is the transition kernel corresponding to ALG.Then for any x ∈ Zd, Algo-

rithm 3 generates a Markov chain with transition probability P̄ that satisfies the following

inequality

‖P̄ k(x, ·)− PZd(·)‖TV ≤ (1− Cδ)k + (1 +
1

Cδ
)
V ρn

δ
, (A.2)

where δ is obtained from (2.5), n is the number of iterations of ALG, and C is a constant

that satisfy the following inequality

1− 2V ρn

δ
≤ C ≤ 1 +

2V ρn

δ
. (A.3)

51



Effect of non-ideality of ALG in IMHRZ

Proof. From geometric ergodicity of ALG we have

sup
A⊆Rd

Pn(t, A)− π(A) ≤ V ρn

Here t is a fixed initial state of ALG. We obtain the candidate state z ∈ Zd by quantizing

the sample returned by ALG to its nearest integer point. Let q̄ denote the proposal

distribution thus obtained.

q̄(z) = Pn(t, Az),

where Az is the d dimesional unit hypercube centered at z. Let q denote the proposal

distribution if ALG does an ideal sampling from π.

q(z) = π(Az)

Then,

‖q̄(·)− q(·)‖TV = sup
B⊆Zd

∑
z∈B

q̄(z)− q(z)

= sup
B⊆Zd

∑
z∈B

Pn(t, Az)− π(Az)

= sup
B⊆Zd

Pn(t, AB)− π(AB)

≤ sup
A⊆Rd

Pn(t, A)− π(A)

≤ V ρn

Although ALG generates the proposed state from the distribution q̄, for calculating the

acceptance ratio, we use the distribution q. Thus Markov chain generated by MH step

has the following transition probability

P̄ (x,y) =

q̄(y) min
(

1,
PZd (y)q(x)

PZd (x)q(y)

)
, if y 6= x,

1−
∑

z 6=x q̄(z) min
(

1,
PZd (z)q(x)

PZd (x)q(z)

)
, if y = x.

Here PZd is the desired d-dimensional lattice distribution. Stationary distribution of the

above Markov chain P̄ is

P̄Zd(x) =
PZd(x)q̄(x)

Cq(x)
,

where,

C =
∑
x

PZd(x)q̄(x)

q(x)
.
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This can be verified using detailed balance equation. Since ϕ is L-smooth, from Propo-

sition 2, we have
q(x)

PZd(x)
≥ δ > 0,

q̄(x)

P̄Zd(x)
=

Cq(x)

PZd(x)
≥ Cδ > 0.

Thus P̄ is a uniformly ergodic Markov chain. Hence

‖P̄ k(x, ·)− P̄Zd(·)‖TV ≤ (1− Cδ)k. (A.4)

We also have,

|C − 1| =

∣∣∣∣∣∑
x

PZd(x)q̄(x)

q(x)
− PZd(x)

∣∣∣∣∣
≤
∑
x

PZd(x)

q(x)
|q̄(x)− q(x)|

≤ 1

δ

∑
x

|q̄(x)− q(x)|

≤ 2V ρn

δ
.

=⇒ 1− 2V ρn

δ
≤ C ≤ 1 +

2V ρn

δ
. (A.5)

Now the TVD between P̄Zd and PZd can be bounded as follows:

‖P̄Zd(·)− PZd(·)‖TV =
1

2

∑
x∈Zd

∣∣∣∣PZd(x)q̄(x)

Cq(x)
− PZd(x)

∣∣∣∣
=

1

2

∑
x∈Zd

PZd(x)

Cq(x)
|q̄(x)− Cq(x)|

≤ 1

2Cδ

∑
x∈Zd

C|q̄(x)− q(x)|+ |1− C|q̄(x)

=
1

δ
‖q̄(·)− q(·)‖TV +

|1− C|
2Cδ

≤ V ρn

δ
+
V ρn

Cδ2
.

Finally using triangle inequality, we have

‖P̄ k(t, ·)− PZd(·)‖TV ≤ ‖P̄ k(t, ·)− P̄Zd(·)‖TV + ‖P̄Zd(·)− PZd(·)‖TV

≤ (1− Cδ)k + (1 +
1

Cδ
)
V ρn

δ
.

(A.6)
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Geometric Ergodicity of RWMR

Here we elaborate on the geometric ergodicity of RWMR algorithm. First we present

few definitions.

Definition 12. A probability density π is called sub-exponential if it satisfies the fol-

lowing condition

lim
‖x‖→∞

x̂ · ∇ log π(x) = −∞, (B.1)

where x̂ denotes the unit vector in the direction of x. This implies that for any a >

0, h > 0, there exists an r such that for all x satisfying ‖x‖ > r

π(x + ax̂)

π(x)
≤ e−ah. (B.2)

Definition 13. A Markov chain with transition kernel P is said to satisfy minorization

condition with respect to a set C ⊆ X if there exists k > 0, δ > 0 and a probability

measure ν such that

P k(x, B) ≥ δν(B), x ∈ C (B.3)

for all measurable B ⊆ X . The set C is referred to as a small set.

Corollary 3. For a Markov chain generated by Metropolis-Hastings algorithm over Zd,
any non-empty compact subset of Zd is small if the proposal distribution is positive

everywhere.

Proof. Let q denote the proposal distribution and P be the transition probability. Since

q(x, ·) is positive erverywhere, we have

P (x,y) ≥ q(x,y)α(x,y) > 0.
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Let C ⊆ Zd be compact. Then,

inf
x∈C

P (x,y) > 0, ∀ y ∈ Zd.

Let

ε =
∑
y∈Zd

inf
x∈C

P (x,y),

ν(y) = ε−1 inf
x∈C

P (x,y).

Then we have,

P (x,y) ≥ εν(y), ∀x ∈ C, ∀y ∈ Zd

Therefore C is a small set.

Definition 14. A Markov chain with discrete state space X satisfies the drift condition

if there are constants 0 < λ < 1, b < ∞ and a Lyapunov function V : X → [1,∞) such

that ∑
y∈X

P (x,y)V (y) ≤ λV (x) + b1C(x) (B.4)

for all x ∈ X , where C ⊆ X is a small set.

It is well known that drift condition is a sufficient condition for a Markov chain to

be geometrically ergodic [14].

Proposition 6. The Markov chain generated by RWMR is geometrically ergodic if π is

a sub-exponential probability density.

Proof. From Corollary 3 it is clear that any compact subset of Zn is a small set. Therefore

to prove the drift condition, it suffices to show that

λ = lim sup
‖x‖→∞

∑
y∈Zn

P (x,y)V (y)

V (x)
< 1, (B.5)

for some Lyapunov function V . By arguments similar to proof of Theorem 2 in [6] we

conclude that the above condition is satisfied.
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Hamiltonian Dynamics based

Symmetric Proposal Algorithm

Hamiltonian dynamics can generate proposals for the Metropolis-Hastings algorithm,

which are far away from the current state of the Markov chain but has a high probability

of getting accepted as the next state. The challenge in using Hamiltonian dynamics for

sampling from discrete distributions is to maintain the symmetric nature of the proposal

distribution q. In Algorithm 7 we describe a simple way to accomplish this. First,

the momentum variables are introduced as required by Hamiltonian dynamics. Here,

the state-space of the Markov chain is the set of all integer points in phase space. To

each component of the current state of the Markov chain, which is an integer point, we

add a uniform random variable with support [−1
2 ,

1
2 ]. With the point thus obtained as

the initial state, we run Hamiltonian dynamics. The final point, given by Hamiltonian

dynamics, is rounded off to the nearest integer point to get the proposed state. Using

conservation of Hamiltonian and volume-preserving properties of Hamiltonian dynamics,

we can show that such a proposal distribution is symmetric. As in the case of HMC, at

the beginning of each iteration, momentum variables need to be resampled from lattice

Gaussian distribution DZd,σ,0 (see equation 1.3). We use a simple rejection sampling

method mentioned in [1] for this.

Proposition 7. The proposal distribution in Algorithm 7 is symmetric in nature.

Proof. Let w, z be two points in the phase space and let T denote the transformation

corresponding to Hamiltonian dynamics. Also let Aw and Az denote the unit hypercube

centered at w and z respectively. It suffices to prove that the volume of points in Aw
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Algorithm 7: Hamiltonian Dynamics based Symmetric Algorithm

Input: B, ϕ,∇ϕ,X0, σ, ε, L

Output: Sample from a distribution statistically close to PΛ

for t = 1, 2, . . . do

Let x be the state of Xt Sample p0 from DZd,σ,0;

Generate ux ∼ Ud[−1
2 ,

1
2 ] and up ∼ Ud[−1

2 ,
1
2 ];

xi ← x + ux;

pi ← p0 + up;

(xf ,pf )←Algorithm 1(xi,pi, ε, L,∇ϕ);

Round xf ,pf to its nearest point in Zn to get y,p;

Calculate the acceptance ratio:

α((x,p0), (y,p)) = 1 ∧ exp
(
ϕ(x)− ϕ(y) + ‖p0‖2−‖p‖2

2σ2

)
;

Generate a sample u from U [0, 1];

if u ≤ α((x,p0), (y,p)) then

let Xt = y;

else

Xt = x;

end

if t > tmix(ε) then
Output the state of BXt

end

end

that gets transformed by T to points in Az is same as the volume of points in Az that

gets transformed to points in Aw. We will use the properties of Hamiltonian dynamics

described in section 1.3.2 to prove this. Define Aw,z as follows:

Aw,z := {u ∈ Az : ∃v ∈ Aw s.t. Tv = u}.

u ∈ Aw,z =⇒ ∃v ∈ Aw and u ∈ Az s.t. Tv = u.

By reversibility of T ,

Tv = u =⇒ Tu = v.

u ∈ Aw,z =⇒ ∃u ∈ Az and v ∈ Aw s.t. Tu = v.

=⇒ v = Tu ∈ Az,w.

=⇒ TAw,z ⊆ Az,w.
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TAz,w ⊆ Aw,z.

Due to reversibility we have,

TTAz,w = Az,w.

=⇒ Az,w ⊆ TAw,z.

=⇒ Az,w = TAw,z.

Thus, set Aw,z get transformed to set Az,w under the transformation T and vice-versa.

By volume preservation property of Hamiltonian dynamics,

V olume(Aw,z) = V olume(Az,w).

Optimal tuning of parameters

The main parameters to be fixed in the HDS algorithm are L and ε. L and ε corresponds

to the number of steps and step size used in the Leapfrog integrator. A large value of

ε will diminish the accuracy of the Leapfrog integrator, while a small value limits the

exploration capability of the algorithm. Since L directly impacts the computations

required, it is kept constant to have a fair comparison of mixing properties with other

algorithms. If we do not scale ε with dimension, the acceptance rate degrades. It is

known that, like random walk Metropolis, Hamiltonian dynamics also has an optimum

acceptance rate which is 0.64 [36]. The step size ε should be scaled with dimension as

d−
1
4 to maintain approximately the same acceptance rate. Also, we scaled ε according

to target distribution as
√
λ, where λ is the mean of eigenvalues of covariance matrix

corresponding to target density. This will ensure that step size is not too large or small

for the target density under consideration. In our experiments, we initially found out

the values of ε and L which works well for bivariate isotropic Gaussian density. Then ε

was scaled as mentioned above. Specifically, we used the following equation for ε. The

value of L used was 10.

ε = 0.6

(
2

d

) 1
4 √

λ (C.1)
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Piece-wise Constant

Approximation for Gaussian

Density

In this section, we substantiate the claim in Section 3.1 that the choice of π̄(x) = π([x])

can give rise to a Markov chain which is not uniformly ergodic. We show this for a

simple case where π is a 1-dimensional Gaussian density. From Theorem 2.1 in [21], it

follows that, if ess inf π(x)
π̄(x) = 0 with respect to π̄ measure, then Independent Metropolis

Hastings algorithm is not even geometrically ergodic. Let π be a 1-dimensional Gaussian

density and π̄(x) = π([x]). Let x̄ denote [x] and let y = x− x̄. Then,

π(x)

π̄(x)
= M

e−(x̄+y)2

e−x̄2

= Me−2x̄ye−y
2
,

(D.1)

where M is a constant. By definition, essential infimum of π(x)
π̄(x) with respect to π̄ measure

is the greatest number a such that the set,

A = {x ∈ R :
π(x)

π̄(x)
< a}

has zero π̄-measure. It is clear from (D.1) that, by choosing a large value for x, π(x)
π̄(x) can

be made arbitrary close to 0 within a set of nonzero π̄ measure.

=⇒ ess inf
π(x)

π̄(x)
= 0.
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This shows that for π̄(x) = π([x]), Independent Metropolis Hastings algorithm need not

even be geometrically ergodic.

60



Bibliography

[1] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new

cryptographic constructions,” in Proc. 40th Annu. ACM Symp. Theory Comput.,

2008, p. 197–206.

[2] C. Ling and J. Belfiore, “Achieving AWGN channel capacity with lattice Gaussian

coding,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5918–5929, 2014.

[3] S. Vatedka, N. Kashyap, and A. Thangaraj, “Secure compute-and-forward in a

bidirectional relay,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2531–2556, 2015.

[4] D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz, “Solving the

Shortest Vector Problem in 2n time using discrete Gaussian sampling: Extended

abstract,” in Proc. STOC, 2015, p. 733–742.

[5] S. Liu, C. Ling, and D. Stehle, “Decoding by sampling: A randomized lattice algo-

rithm for bounded distance decoding,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp.

5933–5945, 2011.

[6] Z. Wang and C. Ling, “On the geometric ergodicity of Metropolis-Hastings algo-

rithms for lattice Gaussian sampling,” IEEE Trans. Inf. Theory, vol. 64, no. 2, pp.

738–751, 2018.

[7] Z. Wang, S. Lyu, and L. Liu, “Learnable Markov Chain Monte Carlo sampling

methods for lattice Gaussian distribution,” IEEE Access, vol. 7, pp. 87 494–87 503,

2019.

[8] S. Anaswara, “Sampling from multidimensional distributions supported on a lat-

tice,” Master’s thesis, Indian Institute of Science, Bengaluru, 2020.

[9] P. Klein, “Finding the closest lattice vector when it’s unusually close,” in Proc.

ACM-SIAM Symp. Discrete Algorithms, 2000, p. 937–941.

61



Bibliography

[10] C. Peikert, “An efficient and parallel Gaussian sampler for lattices,” in Advances in

Cryptology, T. Rabin, Ed. Springer Berlin Heidelberg, 2010, pp. 80–97.

[11] T. Prest, “Gaussian sampling in lattice-based cryptography,” Ph.D. dissertation,

Ecole normale supérieure - ENS PARIS, 2015.

[12] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of Markov chain

Monte Carlo, S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Eds. Chapman

and Hall/CRC, 2011, p. 113–162.

[13] A. B. Tsybakov, Introduction to Nonparametric Estimation. Springer, 2008.

[14] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, 2nd ed. Cam-

bridge University Press, 2009.

[15] G. O. Roberts and J. S. Rosenthal, “General state space Markov chains and MCMC

algorithms,” Probab. Surveys, vol. 1, pp. 20–71, 2004.

[16] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu, “Log-concave sampling:

Metropolis-Hastings algorithms are fast,” J. Mach. Learn. Res, vol. 20, no. 183,

pp. 1–42, 2019.

[17] G. O. Roberts, A. Gelman, and W. R. Gilks, “Weak convergence and optimal

scaling of random walk Metropolis algorithms,” Ann. Appl. Probab., vol. 7, no. 1,

pp. 110–120, 1997.

[18] G. O. Roberts and J. S. Rosenthal, “Complexity bounds for MCMC via diffusion

limits,” 2014. [Online]. Available: https://arxiv.org/pdf/1411.0712.pdf

[19] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Eds., Handbook of Markov Chain

Monte Carlo. Chapman and Hall/CRC, 2011.

[20] G. O. Roberts and R. L. Tweedie, “Exponential convergence of Langevin distri-

butions and their discrete approximations,” Bernoulli, vol. 2, no. 4, pp. 341–363,

1996.

[21] K. L. Mengersen and R. L. Tweedie, “Rates of convergence of the Hastings and

Metropolis algorithms,” Ann. Statist., vol. 24, no. 1, pp. 101–121, 1996.

[22] S. Livingstone, M. Betancourt, S. Byrne, and M. Girolami, “On the geometric

ergodicity of Hamiltonian Monte Carlo,” Bernoulli, vol. 25, no. 4A, pp. 3109–3138,

2019.

62

https://arxiv.org/pdf/1411.0712.pdf


Bibliography

[23] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed.

Springer-Verlag, 1999.

[24] W. Ehm, T. Gneiting, and D. Richards, “Convolution roots of radial positive definite

functions with compact support,” Trans. Am. Math. Soc, vol. 356, no. 11, pp. 4655–

4685, 2004.

[25] L. Tierney, “Markov chains for exploring posterior distributions,” Ann. Statist.,

vol. 22, no. 4, pp. 1701–1728, 1994.

[26] S. Chatterjee, P. Diaconis, and A. Sly, “Properties of uniform doubly stochastic

matrices,” 2010. [Online]. Available: https://arxiv.org/pdf/1010.6136.pdf

[27] Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu, “Fast MCMC sampling algo-

rithms on polytopes,” Journal of Machine Learning Research, vol. 19, no. 55, pp.

1–86, 2018.

[28] A. Smith, “Some analyses of Markov chains by the coupling method,” Ph.D. dis-

sertation, Stanford University, 2015.

[29] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and doubly stochastic

matrices,” Pacific Journal of Mathematics, vol. 21, no. 2, pp. 343 – 348, 1967.

[30] P. A. Knight, “The Sinkhorn–Knopp algorithm: Convergence and applications,”

SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp. 261–275,

2008.

[31] M. Idel, “A review of matrix scaling and Sinkhorn’s normal form for matrices and

positive maps,” 2016. [Online]. Available: https://arxiv.org/pdf/1609.06349.pdf

[32] M. Krishnapur and N. Kashyap, “Iteration to generate doubly stochastic matrices,”

preprint.

[33] R. Sinkhorn and P. Knopp, “Problems involving diagonal products in nonnegative

matrices,” Transactions of the American Mathematical Society, vol. 136, pp. 67–75,

1969.

[34] V. Cappellini, H. Sommers, W. Bruzda, and K. Życzkowski, “Random bistochastic
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